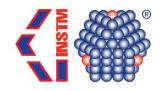

Materiali e processi nella produzione di dispositivi per il settore salute MABIOMED


Direzione

Prof. ssa Maria Letizia Focarete

Dipartimento di Chimica "Giacomo Ciamician" dell'Università di Bologna

Con il patrocinio di

OPEN DAY

25 ottobre 2023

SCADENZA ISCRIZIONI

28 novembre 2023

SELEZIONI

7 dicembre 2023

IMMATRICOLAZIONI

20 dicembre 2023 - 8 gennaio 2024

POSTI DISPONIBILI

18

CREDITI FORMATIVI UNIVERSITARI

60

PERIODO

gennaio 2024 – marzo 2025

FREQUENZA OBBLIGATORIA

75%

DIDATTICA

288 ore di lezioni 24 ore di laboratori 2 giorni/settimana – venerdì e sabato

STAGE / PROJECT WORK

500 ore

SEDI

Bologna

Dipartimento di Chimica "Giacomo Ciamician" - CHIM e aule presso altri dipartimenti

Modena-Reggio Emilia Dipartimento di Scienze della Vita

COSTO

4.000 € in due rate uditori: rata unica di 2.500€

Presentazione

Obiettivo del Master è quello di formare figure e profili professionali che assecondino con forza le richieste emergenti provenienti dalle aziende della filiera biomedicale e delle lavorazioni annesse, rispondendo anche alle esigenze di innovazione legate a materiali e processi, così come alle esigenze sempre più pressanti di sostenibilità.

Accanto alle conoscenze tecniche indispensabili relative ai biomateriali polimerici da utilizzare nel settore biomedicale, alle modalità di lavorazione di tali materiali e a materiali e nanomateriali innovativi, il master intende fornire anche competenze legate all'open innovation, alla gestione ambientale, alle competenze organizzative e manageriali di base per l'analisi, la gestione e la progettazione dei processi di produzione.

Inoltre, saranno fornite conoscenze sulla valutazione della sicurezza dei materiali polimerici da utilizzare in campo biomedicale (in termini di additivi utilizzati, residui di lavorazione, ecc.) e sulla validazione dei prodotti alla luce delle normative sui dispositivi medici. Queste conoscenze saranno integrate da quelle relative alla valutazione della biocompatibilità e ai principi del 'regolatorio' nella filiera biomedicale.

Infine, il master fornirà anche conoscenze di statistica e di controllo statistico della qualità.

Insegnamenti

- Introduzione alla gestione dei team e dei progetti Valerio Incerti, Giacomo Carli
- Statistica e controllo statistico della qualità Michele Scagliarini, Gabriele Soffritti
- Biomateriali
 Maria Letizia Focarete, Paola Fabbri, Daniele Caretti
- Processi di lavorazione e altri processi specifici nel biomedicale
 Paolo Pozzi
- Gestione ambientale
 Fabrizio Passarini, Luca Ciacci, Ivano Vassura,
 Daniele Cespi
- Membrane, filtrazione e processi di bioseparazione in ambito biomedicale Cristiana Boi
- Biocompatibilità, regolatorio e sicurezza dei materiali Laura Calzà, Paolo Pescio
- Open innovation e imprenditorialità Nicole Ticchi, Sauro Vicini
- Innovazione nei materiali e nelle tecnologie per il settore salute
 Paola Fabbri, Stefania Rapino, Maria Letizia Focarete
- Nanomateriali per diagnostica e terapie avanzate Luca Prodi, Stefania Rapino
- Caratterizzazione di superfici e interazione con la materia vivente Daniela Quaglino, Michele Di Lauro

Destinatari

Il Master si rivolge a laureati magistrali nei seguenti ambiti: chimica, chimica farmaceutica, chimica industriale, ingegneria chimica, ingegneria dei materiali, biologia, biotecnologia, ingegneria biomedica.

In base a una valutazione positiva della Commissione giudicatrice, possono essere ammessi al percorso di selezione anche candidati in possesso di altre lauree in ambito medico/ingegneristico, purché in presenza di un curriculum vitae che documenti una qualificata competenza nelle materie oggetto del Master.

Risultati attesi

Al termine del percorso, il partecipante avrà acquisito conoscenze e competenze riguardanti:

- l'utilizzo dei metodi statistici per il controllo e il miglioramento della qualità, con particolare attenzione al controllo statistico di processo e all'analisi di capacità dei processi produttivi;
- i fondamenti della chimica macromolecolare, necessaria alla comprensione della correlazione tra struttura e proprietà dei materiali polimerici utilizzati in ambito biomedicale;
- la progettazione del processo tecnologico di lavorazione più adatto a ottenere dispositivi in linea con le caratteristiche richieste;
- i processi per modificare le proprietà chimiche e chimico-fisiche di superfici e interfacce, oltre alle tecniche per la loro caratterizzazione morfologica e metrologica e all'interazione superficiale dei biomateriali e ambiente biologico;
- gli elementi basilari relativi ai processi di filtrazione e separazione a membrana;
- i principi di base dei test di biocompatibilità invitro e invivo per studi di efficacia e di sicurezza;
- le normative sui dispositivi medici per la validazione dei prodotti e per la registrazione CE / FDA;
- la gestione dei processi, il project management e la gestione dei team;
- l'innovazione nei biomateriali, nei nanomateriali e nelle tecnologie di fabbricazione;
- · la gestione ambientale;
- l'Open Innovation.

Contatti

Sito del Master: master.unibo.it/materiali-prodottibiomedicale

Bando consultabile seguendo il percorso: www.unibo.it > Didattica > Master universitari > 2023 - 2024 > Materiali e processi nella produzione di dispositivi per la salute

Rapporti con le aziende

Riccardo Galletti Fondazione Alma Mater r.galletti@fondazionealmamater.it 0512080622

Segreteria didattica

Bruno Cortesi Fondazione Alma Mater b.cortesi@fondazionealmamater.it 051 2080621

