DNAzima. un biosensore per gli ioni K+ in soluzioni acquose

L. Bruni^{1,2,3}, S. Croci^{1,2,3}

¹Centro Fermi – Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi – Roma; ²Dipartimento di Neuroscienze, Unità di Biofisica e Fisica Medica, Università di Parma, ³Istituto Nazionale Biostrutture e Biosistemi – Roma

Workshop : Biosensori innovativi per l'ambiente e la salute. 14 Novembre 2014 Roma

Enzima a DNA

G-quadruplex - apoenzima

Emina – gruppo prostetico

Attività catalitica perossidasica

Gruppo prostetico - emina

Gruppo prostetico di alcune proteine

Quattro anelli pirrolici

Ponti metinici

Atomo di Fe che coordina 4 N

emina

Seguire il folding del G-quadruplex, tramite spettroscopia UV-VIS e spettroscopia di fluorescenza

Apoenzima – G-quadruplex

G-quadruplex

Guanine Tetrad

A-GGG-T-GGG-GA-GGG-T-GGG-GA

Quadruplex-Forming Sequence (QFS)

G Quadruplex

Cationi monovalenti $K^+ > Na^+ > Rb^+ > NH_4^+ > Cs^+ > Li^+$

Fundamentals of Quadruplex Structures G. N. Parkinson

Apoenzima – G-quadruplex

Perchè il K+?

Figure 5 Counter ion coordination between tetrad bases shown with twist between bases. (a) Potassium metal ion is shown coordinated between eight carbonyl oxygens with an average 2.73 coordination distance. (b) A space filling model with potassium counter ions

Apoenzima – G–quadruplex

Phthalocyanines: a new class of G-quadruplex-ligands with many potential applications. H. Yaku et al., Molecules 2012.

Apoenzima – G-quadruplex

Chem. Comm., 1467 (2008)

DNAzima utilizzato come biosensore per misurare la concentrazione di K⁺ in soluzioni acquose

Range di concentrazione

Sensibilità

Limite di rivelazione

DNAzima

DNA-enhanced peroxidase activity of a DNA aptamer-hemin complex

Paola Travascio, Yingfu Li and Dipankar Sen Chemistry and Biology 5.505–517

DNA PS2.M 5'-GTGGGTAGGGCGGGTTGG-3'

Buffer di folding 30'

G-quadruplex + emina 30' DNAzima DNAzima

DNAzima foldato in presenza di [Na+] - 30 mM – buffer di folding

TECNICHE

Dicroismo Circolare

Formazione G-quadruplex e topologia

Formazione DNAzima (legame emina G-quadruplex)

Spettroscopia UV-VIS

Fonti di ioni K⁺

K.Cl 10 mM - 100 mM CD; 0 mM - 100 mM UV-VIS

Spettri CD G-quadruplex

Abs

Abs

Abs

Fonti di ioni K⁺ KCL 5mM – 100 mM CD; 0 mM – 100 mM UV–VIS

 $\frac{\mathbf{K} \cdot \mathbf{D} - \mathbf{rib}}{5} 5 \mathbf{m} \mathbf{M} = 15 \mathbf{m} \mathbf{M} \mathbf{K}^{+}$

Abs

Fonti di ioni K+

Hs 578T carcinoma mammario umano con crescita in adesione

Trattato con K: D-rib 5mM 48h

DNAzima come biosensore di ioni K⁺

Fonti di ioni K⁺

KCL 5mM – 100 mM CD; 0 mM – 100 mM UV–VIS

 $K_{\bullet}D-rib 5mM = 15 mM K^{+}$

Surnatante linea cellulare Hs 578T trattata con K.D-rib 5mM per 48h

DMEM trattato con K.D-rib 5mM incubato a 37° 48h (DMEM [K+] = 5mM)

Surnatante linea cellulare Hs 578T di controllo

DMEM incubato a $37^{\circ} 48h$ (DMEM [K⁺] = 5mM)

Ed in presenza di Na⁺ che cosa accade?

[Na⁺] ~ 30 mM Nel buffer di spettroscopia

[Na⁺] nel mezzo extracellulare 155 mM

Abs

CONCLUSIONI

Folding del DNAzima in presenza di diverse tipologie di soluzioni, anche complesse (DMEM e surnatante cellulare);

Biosensore sensibile solo nell'intervallo 0 mM KCl – 0.5 mM di KCl anche in presenza di altri ioni (es. $[Na^+] \sim 30$ mM) con spettroscopia UV–VIS; con CD abbiamo differenze significative tra 30 mM di KCl e 40 mM KCl con il solo G–quadruplex;

Sia il CD che la spettroscopia UV–VIS non rilevano differenze di concentrazione di K⁺ tra DMEM trattato e surnatante cellulare trattato;

Prospettive Future

Studio della sensibilità del biosensore attraverso aumento del rapporto tra variazione del valore misurato e la variazione del valore reale (concentrazione di K⁺) modificando la concentrazione degli ioni Na⁺ e K⁺;

Calibrazione del biosensore all'interno del range di concentrazioni di lavoro

Studio dettagliato del ruolo strutturale dello ione Na+